The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H.
نویسندگان
چکیده
Three NifS-like proteins, IscS, CSD, and CsdB, from Escherichia coli catalyze the removal of sulfur and selenium from L-cysteine and L-selenocysteine, respectively, to form L-alanine. These enzymes are proposed to function as sulfur-delivery proteins for iron-sulfur cluster, thiamin, 4-thiouridine, biotin, and molybdopterin. Recently, it was reported that selenium mobilized from free selenocysteine is incorporated specifically into a selenoprotein and tRNA in vivo, supporting the involvement of the NifS-like proteins in selenium metabolism. We here report evidence that a strain lacking IscS is incapable of synthesizing 5-methylaminomethyl-2-selenouridine and its precursor 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA, suggesting that the sulfur atom released from L-cysteine by the action of IscS is incorporated into mnm(5)s(2)U. In contrast, neither CSD nor CsdB was essential for production of mnm(5)s(2)U and 5-methylaminomethyl-2-selenouridine. The lack of IscS also caused a significant loss of the selenium-containing polypeptide of formate dehydrogenase H. Together, these results suggest a dual function of IscS in sulfur and selenium metabolism.
منابع مشابه
A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli.
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) into Cys-tRNA(Cys) in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) to selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in...
متن کاملInactivation of the selB gene in Methanococcus maripaludis: effect on synthesis of selenoproteins and their sulfur-containing homologs.
The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the ...
متن کاملSelective selC-Independent Selenocysteine Incorporation into Formate Dehydrogenases
The formate dehydrogenases (Fdh) Fdh-O, Fdh-N, and Fdh-H, are the only proteins in Escherichia coli that incorporate selenocysteine at a specific position by decoding a UGA codon. However, an excess of selenium can lead to toxicity through misincorporation of selenocysteine into proteins. To determine whether selenocysteine substitutes for cysteine, we grew Escherichia coli in the presence of e...
متن کاملRecognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress.
Introduction UGA codons function alternatively either as selenocysteine codons or as termination signals both in prokaryotes and in eukaryotes. This cotranslational incorporation of selenocysteine at UGA codons has earned it the designation of the 21st amino acid [ 11. Considerable progress has been made recently in unravelling the process of selenocysteine incorporation, particularly in prokar...
متن کاملIdentified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 10 شماره
صفحات -
تاریخ انتشار 2002